Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Public Health ; 23(1): 138, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2196199

ABSTRACT

OBJECTIVE: Compared with other regions in the world, the transmission characteristics of the COVID-19 epidemic in Africa are more obvious, has a unique transmission mode in this region; At the same time, the data related to the COVID-19 epidemic in Africa is characterized by low data quality and incomplete data coverage, which makes the prediction method of COVID-19 epidemic suitable for other regions unable to achieve good results in Africa. In order to solve the above problems, this paper proposes a prediction method that nests the in-depth learning method in the mechanism model. From the experimental results, it can better solve the above problems and better adapt to the transmission characteristics of the COVID-19 epidemic in African countries. METHODS: Based on the SIRV model, the COVID-19 transmission rate and trend from September 2021 to January 2022 of the top 15 African countries (South Africa, Morocco, Tunisia, Libya, Egypt, Ethiopia, Kenya, Zambia, Algeria, Botswana, Nigeria, Zimbabwe, Mozambique, Uganda, and Ghana) in the accumulative number of COVID-19 confirmed cases was fitted by using the data from Worldometer. Non-autoregressive (NAR), Long-short term memory (LSTM), Autoregressive integrated moving average (ARIMA) models, Gaussian and polynomial functions were used to predict the transmission rate ß in the next 7, 14, and 21 days. Then, the predicted transmission rate ßs were substituted into the SIRV model to predict the number of the COVID-19 active cases. The error analysis was conducted using root-mean-square error (RMSE) and mean absolute percentage error (MAPE). RESULTS: The fitting curves of the 7, 14, and 21 days were consistent with and higher than the original curves of daily active cases (DAC). The MAPE between the fitted and original 7-day DAC was only 1.15% and increased with the longer of predict days. Both the predicted ß and DAC of the next 7, 14, and 21 days by NAR and LSTM nested models were closer to the real ones than other three ones. The minimum RMSEs for the predicted number of COVID-19 active cases in the next 7, 14, and 21 days were 12,974, 14,152, and 12,211 people, respectively when the order of magnitude for was 106, with the minimum MAPE being 1.79%, 1.97%, and 1.64%, respectively. CONCLUSION: Nesting the SIRV model with NAR, LSTM, ARIMA methods etc. through functionalizing ß respectively could obtain more accurate fitting and predicting results than these models/methods alone for the number of confirmed COVID-19 cases in Africa in which nesting with NAR had the highest accuracy for the 14-day and 21-day predictions. The nested model was of high significance for early understanding of the COVID-19 disease burden and preparedness for the response.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Algorithms , Egypt , South Africa , Forecasting , Models, Statistical
2.
Mol Neurodegener ; 16(1): 48, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1318288

ABSTRACT

BACKGROUND: Understanding the long-term effects of coronavirus disease 2019 (COVID-19) on cognitive function is essential for monitoring the cognitive decline in the elderly population. This study aims to assess the current cognitive status and the longitudinal cognitive decline in elderly patients recovered from COVID-19. METHODS: This cross-sectional study recruited 1539 COVID-19 inpatients aged over 60 years who were discharged from three COVID-19-designated hospitals in Wuhan, China, from February 10 to April 10, 2020. In total, 466 uninfected spouses of COVID-19 patients were selected as controls. The current cognitive status was assessed using a Chinese version of the Telephone Interview of Cognitive Status-40 (TICS-40) and the longitudinal cognitive decline was assessed using an Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Cognitive assessments were performed 6 months after patient discharge. RESULTS: Compared with controls, COVID-19 patients had lower TICS-40 scores and higher IQCODE scores [TICS-40 median (IQR): 29 (25 to 32) vs. 30 (26 to 33), p < 0.001; IQCODE median (IQR): 3.19 (3.00 to 3.63) vs. 3.06 (3.00 to 3.38), p < 0.001]. Severe COVID-19 patients had lower TICS-40 scores and higher IQCODE scores than non-severe COVID-19 patients [TICS-40 median (IQR): 24 (18 to 28) vs. 30 (26 to 33), p < 0.001; IQCODE median (IQR): 3.63 (3.13 to 4.31) vs. 3.13 (3.00 to 3.56), p < 0.001] and controls [TICS-40 median (IQR): 24 (18 to 28) vs. 30 (26 to 33), p < 0.001; IQCODE median (IQR) 3.63 (3.13 to 4.31) vs. 3.06 (3.00 to 3.38), p < 0.001]. Severe COVID-19 patients had a higher proportion of cases with current cognitive impairment and longitudinal cognitive decline than non-severe COVID-19 patients [dementia: 25 (10.50 %) vs. 9 (0.69 %), p < 0.001; Mild cognitive impairment (MCI): 60 (25.21 %) vs. 63 (4.84 %), p < 0.001] and controls [dementia: 25 (10.50 %) vs. 0 (0 %), p < 0.001; MCI: 60 (25.21 %) vs. 20 (4.29 %), p < 0.001)]. COVID-19 severity, delirium and COPD were risk factors of current cognitive impairment. Low education level, severe COVID-19, delirium, hypertension and COPD were risk factors of longitudinal cognitive decline. CONCLUSIONS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with an increased risk of long-term cognitive decline in elderly population. COVID-19 patients, especially severe patients, should be intensively monitored for post-infection cognitive decline.


Subject(s)
COVID-19/complications , Cognitive Dysfunction/virology , Aged , Aged, 80 and over , COVID-19/epidemiology , China , Cognitive Dysfunction/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL